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13: Filtering & Resolution in FT Image Reconstruction

13.1: Review of Fourier Transform Image Reconstruction
Fourier Encoding and Fourier Inversion
It was shown that the signal sampled in time corresponding to a 3D spatially
encoded signal is the FT of the effective spin density

s(kx, ky, kz) =

∫ ∫ ∫
ρ(x, y, z)e−i2πkxx+kyy+kzzdxdydz (13.1)

This is called Fourier encoding. Reconstruction involves the IFT

ρ(x, y, z) =

∫ ∫ ∫
s(kx, ky, kz)e

i2πkxx+kyy+kzzdxdydz (13.2)

Called Fourier Inversion.

2



MCW Biophysics 230: NMR DB Rowe

13: Filtering & Resolution in FT Image Reconstruction

Infinite Sampling and Fourier Series
The was sampled using a doubly infinite sum of δ functions instead of
continuous monitoring to yield

ρ̂∞(x) = ∆k
∞∑

p=−∞
s(p∆k)ei2πp∆kx (13.3)

In the absence aliasing, the central image ρ̂∞(x)

converges to ρ(x) when no discontinuities are present,

and to 1
2

(
ρ(x+

0 + ρ(x−0 )
)

when the discontinuity is at x0.
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13: Filtering & Resolution in FT Image Reconstruction

Limited Fourier Imaging and Aliasing
Time constraints limit the number of data samples we can get Nx and Ny.

Reconstruction of non-infinite coverage of k-space is called limited-Fourier
inversion

ρ̂(x) = ∆k
n−1∑

p=−n

s(p∆k)ei2πp∆kx (13.4)

with 2n k-space data points spaced ∆k apart,
the total coverage is W = 2n∆k. (13.5)

This reconstructed image is from the finitely (truncated) sampled k-space
measurements.

To avoid aliasing need to satisfy Nyquist-Shannon ∆k = 1
L ≤ 1

A. (13.6)
i.e. need L > A
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13: Filtering & Resolution in FT Image Reconstruction

Signal Series and Spatial Resolution
The other member of the DFT pair is

s(k) =

n−1∑

q=−n

ρ̂(q∆x)e−i2πkq∆x (13.7)

with step size being

∆x =
L

N
=

1

N∆k
=

1

W
(13.8)

This is how we get our voxel size (resolution).

Larger W (cover more spatial frequencies), the smaller ∆x (our voxel size)!

Don’t forget that ∆k = γ− GR∆t meaning ∆x = 1
N∆k = 1

2nγ−GR∆t.

For fixed ∆t, increase GR to increase ∆k and decrease ∆x.
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13.2: Filters and Point Spread Functions

Define any filter as a function H(k) that multiplies the k-space data.

Then the IFT of H(k), h(x) is called the point spread function of H(k).

The reconstructed image ρ̂(x) is ρ̂(x) = ρ(x) ∗ h(x).

The point spread finction is from observing the spread that occurs when
we have a point source (image).

That is, ρ(x) = δ(x).

And thus ρ̂(x) = δ(x) ∗ h(x) = h(x)

because f(x) ∗ δ(x − x0) = f(x − x0).
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13.2: Filters and Point Spread Functions

Point Spread Due to Truncation (Windowing)
Truncation is the same as multiplying s(k) by the rect function

Hw(k) ≡ rect

(
k + 1

2∆k

W

)
. (13.9)

If we were only windowing so that

sw(k) = s(k) · Hw(k) (13.10)

then the reconstructed image is

ρ̂(x) = F−1[s(k) · Hw(k)]

= ρ(x) ∗ hw(x) (13.11)

where
hw(x) = W sinc(πWx)e−i2π∆k

2 x (13.12)

This FT pair was already discussed in Chapter 12.

So the effect of windowing with ∆k/2 rect is to
blur/smooth/convolve each point to other locations by (13.12).
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13.2: Filters and Point Spread Functions

Point Spread for Truncation and Sampled Data
Truncation and sampling is modeled as

Hws(k) ≡ ∆krect

(
k + 1

2∆k

W

) ∞∑

p=−∞
δ(k − p∆k)

= ∆k

n−1∑

p=−n

δ(k − p∆k). (13.13)

and so the measured data is

sm(k) = sws(k)

= s(k) · Hws(k)

= ∆k
n−1∑

p=−n

s(p∆k)δ(k − p∆k) (13.14)
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13.2: Filters and Point Spread Functions

From (13.13) and (13.14) the IFT yields the reconstructed image

ρ̂(x) ≡ ρ̂ws(x)

=

∫ ∞

k=−∞
[sm(k)]ei2πkxdk

=

∫ ∞

k=−∞


∆k

n−1∑

p=−n

s(p∆k)δ(k − p∆k)


 ei2πkxdk

= ∆k
n−1∑

p=−n

∫ ∞

k=−∞
s(p∆k)δ(k − p∆k)ei2πkxdk

= ∆k
n−1∑

p=−n

s(p∆k)ei2πp∆kx (13.15)
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13.2: Filters and Point Spread Functions

Alternatively, can view as convolution

ρ̂(x) = ρ(x) ∗ hws(x) (13.16)

where

hws(x) = F−1 {Hws(k)}

= ∆k
n−1∑

p=−n

e−i2πp∆kx (13.17)

and “it can be shown,” (see Problem 13.2) that

hws(x) = W
sinc(πWx)

sinc(π∆kx)
e−i2π∆k

2 x (13.18)

So the effect of windowing with ∆k/2 rect and sampling
is to blur/smooth/convolve each point to other locations by (13.18).
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Example: Triangle A = 2, L = 2.5, ∆k = 1/L = .4, W = 64∆k = 25.6
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Example: Triangle A = 2, L = 2.5, ∆k = 1/L = .4, W = 64∆k = 25.6
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Example: Triangle A = 2, L = 2.5, ∆k = 1/L = .4, W = 64∆k = 25.6
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13.2: Filters and Point Spread Functions

Point Spread and Additional Filters
Other factors (the Physics of relaxation T2 and T ∗

2 ) modify the signal s(k)
and result in additional blurring.

These other factors can be modeled as filters Hfilter(k)

The more accurate windowed (with ∆k/2 shift),
sampled (doubly infinite δ’s), and other filters can be described as

ŝm,filter(k) = sm(k) · Hfilter(k)

= s(k) · Hws(k) · Hfilter(k)

= s(k) · Hws,filter(k) (13.20)
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13.2: Filters and Point Spread Functions

The more accurate reconstructed image is

ρ̂m,filter(h) = ρ̂(x) ∗ hws(x) ∗ hfilter(x)

= ρ(x) ∗ hws,filter(h) (13.21)

So by taking into account the physical exponential decay (T2 and T ∗
2 )

along with the effect of windowing with ∆k/2 rect and sampling

is to add more blur/smooth/convolve of each point to other locations by
(13.21).
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13.3: Gibbs Ringing

Gibbs Overshoot and Undershoot
We have been representing (decomposing) functions as (into) sinusoids.

When the functions are smooth this works very well.

When the functions have a very sharp jump (discontinuity),
then this does not work well.

The limiting over and under shoot is approx 9% of the height.

Let’s look at an example of a square wave.
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13.3: Gibbs Ringing: Example
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Exact rect function on left (black). Exact sinc on right (black).
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13.3: Gibbs Ringing: Example
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Exact rect function on left (black). Exact sinc on right (black).
Truncated sinc on right (blue).
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13.3: Gibbs Ringing: Example
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L = 19.2cm, ∆x = L/N = .2cm ∆k = 1/L = 1/19.2, N = 96

Exact rect function on left (black). Exact sinc on right (black).
Rect from truncated sinc left (blue). Truncated sinc on right (blue).

When we have a sharp discontinuity in MRI from head to space or between
brain structures we can get Gibbs ringing!
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13.3: Gibbs Ringing: Example
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Exact rect function on left (black). Exact sinc on right (black).
Rect from truncated sinc left (blue). Truncated sinc on right (blue).
Rect from less truncated sinc left (red). Less truncated sinc on right (red).

Less Gibbs ringing the more frequencies we sample!
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13.3: Gibbs Ringing: Example
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Note that the red reconstructed image is sharper to the discontinuity
But the height is still the same. Red image numbers.
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(1.0895 − 1)/1 · 100% ≈ 9% overshoot!
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13.3: Gibbs Ringing

Gibbs Oscillation Frequency
As we sample at same minimum ∆k but further out,
the over/under shoot gets closer to the discontinuity.

Going further out does not affect the height.

If we sample twice as far out in k-space,
overshoot is half as far from discontinuity.
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13.3: Gibbs Ringing

Reducing Gibbs Ringing by Filtering
If the data is multiplied by a function that vanishes, along with its first
derivative at k = ±kmax, it is said to have been apodized.

One apodizing filter that is used is the Hanning filter.

HHanning(k) =
1 + cos

(
2πk
W

)

2
= cos2

(
πk

W

)
(13.33)

The IFT of the Hanning is

hHanning(x) =
1

4
δ(x − ∆x) +

1

2
δ(x) +

1

4
δ(x + ∆x) (13.34)

23



MCW Biophysics 230: NMR DB Rowe

13.3: Gibbs Ringing

The corresponding reconstructed spin density is The IFT of the Hanning is

ρ̂Hanning(x) = hHanning(x) ∗ ρ̂(x)

=
1

4
ρ̂(x − ∆x) +

1

2
ρ̂(x) +

1

4
ρ̂(x + ∆x) (13.35)

The k-space hanning filter corresponds to an averaging in image space.
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13.3: Gibbs Ringing
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13.3: Gibbs Ringing
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Hanning filter on left (blue). Exact sinc on right (black).
Truncated sinc on right (blue).
Truncated sinc multiplied by
Hanning filter on right (red).
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13.3: Gibbs Ringing
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Note reduced Gibbs ringing from hanning smoothing, called apodization. 27
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Read Sections

13.4: Spatial Resolution in MRI

13.5: Filtering Due to T2 and T ∗
2 Decay

13.6: Zero Filled Interpolation, Sub-Voxel Fourier Transform
Shift Concepts and Point Spread Function Effects

13.7: Partial Fourier Imaging and Reconstruction

13.8: Digital Truncation

Homework
Do 13.1, 13.2, 13.3, 13.4
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